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Transformations of Variance-Covariance Tensors 
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(Received 19 May 1966) 

The variances and covariances of atomic coordinates are elements of second-rank contravariant tensors. 
The effects of transformations of axes, symmetry operations, and shifts of origin have been determined. 
Formulas have been derived for calculating the variances and covariances of bond lengths and angles. 
The principal axes of variance-covariance ellipsoids have been determined, and a method has been 
obtained for calculating the minimum variance weighted mean of correlated variables. 

Introduction 

The variance of a function f of a set of atomic param- 
eters x i is given by 

crz(.f)= 2; ~f c f  ~x~ -~-xY cov (x~, x0 (1) 

where the summation is over all parameters included 
in f. The quantity cov(x ~, x0  is the covariance of x ~ 
and xJ if these are different parameters; it is the vari- 
ance of x i if i=j. This equation is strictly valid for 
linear functions, but it is still useful for slowly vary- 
ing non-linear functions (Arley & Buch, 1950). The 
v.c. (variance-covariance) matrix can be obtained from 
the least-squares inverse matrix (Hamilton, 1964). 

l f f  is a function of crystallographically equivalent 
atoms, certain parameters will be linearly related to 
others, and the corresponding covariances will be non- 
zero. The covariances between the parameters of a 
single atom may also be non-zero; this will be the case 
if symmetry imposes a relationship between the param- 
eters, but it is also true of an atom in a general position 
in an oblique coordinate system (Templeton, 1959). 
Even crystallographically independent parameters in 
an orthogonal system may not be statistically inde- 
pendent, and the covariances will not be exactly zero. 

I f /  is a scalar function, the derivatives in (1) with 
respect to contravariant vector components are the 
covariant* components of a vector. The invariance of 

* C o v a r i a n c e  is both a differential geometry term which 
describes transformation properties and a statistical term for 
a measure of correlation. The intended meaning will be ap- 
parent from the context. 

trz(f) with respect to linear transformation is proof 
that the v.c. matrix of the atomic coordinates is a 
second-rank contravariant tensor (International Tables 
Jot X-ray Crystallography, 1959). That is, v.c. matrices 
transform in the same way as products of coordinates. 

Among the functions of crystallographic interest are 
bond lengths and bond angles. Frequently, the param- 
eters used in computing these distances and angles are 
not those obtained directly in the structure determina- 
tion, for which the complete v.c. matrix is presumed 
known, but are generated from these parameters by 
application of certain symmetry operators of the space 
group, q-he variance o f f  may be computed from the 
original v.c. matrix if the derivatives in (1) are evaluated 
with respect to the original parameters (Busing, Mar- 
tin & Levy, 1964). Alternatively, the derivatives can 
be evaluated with respect to the transformed coordin- 
ates; in this case the transformed v.c. matrix must be 
used. These transformations are among the topics dis- 
cussed in this paper. 

A generalization of (1) is 

coy (fe,.[i)= X ?fe ~3Ji ~,a'( ?~xJ cov (x ~, x~) (2) 

where the summation is over all parameters x ~ and xJ 
included in the functions.re and Ji. The transformation 
properties of v.c. matrices are implicit in this formula. 
In matrix notation 

F= D V D (3) 

where coy (fk,)6) is the klth element of F, ~3f~/OxJ is 
the ijth element of D, V is the v.c. matrix of the par- 
ameters, and D is the transpose of D. 
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Magnitude of variance in a given direction 

Let V be the 3 x 3 v.c. matrix of an atom [0"th element = 
coy (x ~, M)]. The magnitude of V in the direction spe- 
cified by the covariant vector components  (ht, h2, h3) of  
vector h is h V h/h 2, where h is the length of h. If  the 
vector is expressed in terms of the contravariant  com- 
ponents (x ~, x 2, x 3) of  vector x of length i, the mag- 
nitude is i g V g x/l 2, where g is the metric tensor with 
ijth element 

gej = a i .  aj . (4) 

We choose the functions 

- -  X A - -  X B 

u~ t l (14) -= X B -- X C 

so that u~ is the ith component  of  vector j .  Then D is 
a 9 x 9 matrix given by (" 

D =  O I - . (15) 

--I O 

Symmetry applied to one of a pair of atoms 

Let V be the 6 × 6 v.c. matrix for atoms A and B. We 
can write V =  (V AA V AB~ 

W~A V~B! (5) 

where VaA, VAR, VBA, VBB are 3 x 3 matrices with ~th 
, -, ( x ~ ,  elements coy (x~, x~), coy (x~, x~), coy (x a, .x A), COY 

X~), respectively. Let B' be generated from B by sym- 
metry operator S. That  is, 

x , ,  = S x , .  (6) 
Let 

.ff = x~, for i =  1, 2, 3 (7) 

fA-= Z S~ x~, for k = 4 ,  5, 6, i = k - 3  (8) 
J 

where S} is the (]th element of  S. The 6 x 6 matrix D 
can be conveniently written 

o__ o) (9, 
where I and O are, respectively, the unit matrix and 
the null matrix. When (5) and (9) are inserted in (3) 
the result is 

V AA V AB" ~ (V AA VAB~ ) 
VB'A VB'B'! = \S  VBA S VBB g " (10) 

Symmetry applied to both atoms 

If symmetry operator S is applied to both atoms A 
and B to give A' and B', 

and 
VA'A" VA'B'] (S V A A S S  VAB ~ ) .  (12) 
Vn'A" Vn'8"! = VBA g S VSB 

Covariances between vector components 

Let V be the 9 x 9 v.c. matrix for the coordinates (x~, 
x] ,  x]),  (x~, x 2, x~), (Xlc, x 2, x 3) of atoms A, B, C. As 
in (5) we can write V in terms of 3 x 3 matrices 

/ V  AA V AB V AC~ 

V= IVBA VBB VBC I . (13) 
\VcA VcB V c c /  

Equation (3) now gives the 9 x 9 v.c. matrix for the 
components  of the three vectors A-B, B-C, C-A. For 
example, the 3 x 3 v.c. matrix for the components  of  
vector A-B is 

VAA -- VBA-- VAB + VBB 

with 0"th element coy (ul, uJ2). The covariances between 
the components  of  A-B and B-C are given by 

V A B - - V B B - - V A c + V B c  

with ijth element coy (ul, uJ2); this is a special case of 
the expression VAC-- VBC-- VAD + VBD for the covari- 
ances between the components  of  vectors A-B and 
C-D. 

Transformations of axes 

Let T be a matrix which transforms to a new set of  axes 

a' = T a .  (16) 

The covariant  components  he of a vector h also obey 
this t ransformation : 

h' = T h .  (17) 

The magnitude of a variance-covariance tensor in the 
direction of the unit vector h must be invariant  under 
transformation.  

h' V' h '=G  V h  (18) 

l ' v '  T h = h  V h.  (19) 

The transformed v.c. matrix is therefore 

V' = T-  1 V T-  t (20) 

Bond lengths between non-equivalent atoms 

Given the 9 x 9 v.c. matrix for the coordinates of  atoms 
A, B, and C (13), we want to calculate the 3 x 3 v.c. 
matrix for the three interatomic distances. If  one or 
more of these atoms was generated by symmetry from 
the atoms actually involved in the structure determina- 
tion, either (10) or (12) must first be used. 

Some simplification can be achieved by applying (15) 
to (13) to obtain the v.c. matrix for the components  
u[ of  the interatomic vectors le, as described above. In 
terms of these components  

le = Z)u~aj. (21) 
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In matrix notation, 1, is a column vector with com- 
ponents u{. The bond lengths ll, /2, 13 are given by 

1~= [l,I 2 = Spcu{ufgpc. (22) 

The desired result is obtained by using h in (3). If the 
v.c. matrix of the vector components is used, the ap- 
propriate matrix D is of dimension 3 × 9 with elements 

Dij = I~. a~/h (23) 

where k = j - 3 i + 3  and Di j=0  unless k is 1, 2, or 3. 
The calculation gives 

0.2(10=|i g (VAA--VAB--VBA+VBB) g !dl21 (24) 

cov (ll, 12)= 
=il  g (VAB--VAc--VBB+ VBc) g 12/1112 . (25) 

For the special case of uncorrelated atoms V a n =  
VBa = O, and (24) is just the sum of the variances of 
A and B in the direction of the bond, in agreement with 
formula 5.2 of Cruickshank & Robertson (1953). How- 
ever, our equation (25) does not agree with their for- 
mula 5.5 for the covariance of the lengths of two bonds 
with a common atom. Several numerical examples 
have been used to confirm (25); the result of Cruick- 
shank & Robertson is correct if, in addition to the 
atoms being uncorrelated, the errors are isotropic. 

Bond lengths when atoms are related by symmetry 

We again consider the case of three atoms. However, 
atom B is now generated from atom A by symmetry 
matrix S, as in (6). The v.c. matrix is 

( i  0 i ) /VAA VAA VAC\ ( i  O i )  s |VaA VAa Vac  g 
0 \VcA VCA VCC] 0 

/ V AA V AAg V 
= / S V A A  SVAAS S V a c / .  (26) 

\ VCA VCAg Vcc l  

The v.c. matrix of the vector components is obtained 
by using (26) and (15) in (3), and the v.c. matrix for 
the bond lengths is then derived by applying matrix D 
of (23). The results are 

O'2(11)=11 g (VAA--SVAA--VAAg+SVaAg)g !1/121 (27) 

0"2(12)=izg(SVAAg-VAcg-SVAc+Vcc)gl2/I~ (28) 

a2(13) =I3 g (VAA--VAc--Vca+Vcc) g 13/l ] (29) 

COV (11, 12) 

= |1  g (V AAg-- SV AAg-- V ac+ SV Ac) g 12/1112 (30) 

COV (11, I3) 

=II g ( - V a a + S V a a + V A c - S V A c )  g 13/1113 (31) 

COY (12, 13) 

=12 g ( -  SV AA + VCA + S V A c  - Vcc) g 13/1213 • (32) 

For the special case of A and B related by a center 
of symmetry, (27) is equivalent to formula 5.3 of 
Cruickshank & Robertson (1953). However, (30) does 
not agree with their corresponding formula 5.6 unless 
the errors are isotropic. 

Bond angles* 

The angles ~x, ez, 0c3 at A, B, C, respectively, of the 
triangle ABC with edges 11 = AB, Iz=BC, 13= CA are 
given by 

~l =cos  -I [(l 2 + 15-12)/21113] 
~2=cos -1 [(l~ + 1~- 1~)/21d2] (33) 
0C3 =COS -1 [(l 2 2r- l~-l~)/21213]. 

The v.c. matrix for these angles is obtained from (3), 
where the elements of V are given by (27)-(32) and 
the ijth element of D is ~i/~lj. The results are 

(1113 sin ~1//2)20"2(0~1) 

= cos 2 ~20"2(11)- 2 cos ~2 coy (ll, 12) 

+ 2 cos ~2 cos ~3 cov (ll,/3) + cr2(12) (34) 

- 2 cos 0c3 coy (12, 13) + COS 2 ~X30"2(13) 

/12 sin ch sin ~2 coy (~1, 0c2)=cos ch cos 0~2a2(/1) 

+ (COS 0~ 2 COS (X 3 --COS 0~1) COV (11, 12) 

+ (COS 0q COS 0¢3- COS 0C2) COV (11, 13)- COS ~X30"2(12) 

+ (1 + COS 2 0~3)COV (/2, 13)--COS ~30"2(13) . (35) 

When the atoms are independent equation (34) is 
equivalent to Cruickshank & Robertson's formula 5.4. 

Covarianees of bond angles with bond lengths 

Using the nomenclature of the previous section, the 
covariances of oq with the bond lengths may be derived 
by letting D of (3) be the 4 x 3 matrix based on the 
derivatives of the functions el, 11, 12,/3 with respect to 
I1, 12, 13. Thus, 

(1113 sin oh~12) cov (~1, 11) 
= - cos cx/o2(/1) + coy (11, 12) - cos :x3 coy (11, 13) (36) 

(11/3 sin oh/12) coy (oh, 12) 
= - c o s  c~2 cov (ll, 12)+az(12)-cos ~3 cov (12,/3). (37) 

Equation (36) does not agree with the corresponding 
formula (5.7) of Cruickshank & Robertson (1953). 

Shift of origin 

It was pointed out by Templeton (1959, 1960) that the 
coordinate variances and covariances yielded by least- 
squares will depend upon which atom is kept fixed. 
The nature of this dependence may be deduced from 
our transformation equations. To illustrate, let us ex- 

* See Darlow (1960) for a different derivation of the errors 
in bond angles. 
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amine the change in the coordinate v.c. matrix (13) 
which ensues if the origin is shifted to atom A. The 
new coordinates of the three atoms are 0, x ~ -  x~, and 
X~c-X~.  The transformation matrix is 

(°°i) D =  - 

I 0 

(38) 

and application of (3) gives 

= = = = = o 

V BB = V AA - -  V BA - -  V A B  -~- V B B  

V ' B c  = V AA - -  V BA - -  M A C  + V BC (39) 

V ' c  B =- V A A  - -  V C A  - -  V A B  + V C B  

V ' c c  = V AA - -  V C A  - -  M A C  + V c c  • 

All bond length and bond angle variances and co- 
variances must of course be invariant under this trans- 
formation. The invariance of the v.c. matrix of the 
vector components results from the relation 

D j D 2  = D I (40) 

where DI iS given by (15) and D2 is given by (38). 
Translation by a vector with zero error will obviously 
not change V. 

Atoms in special positions 

The coordinates of atoms in special positions are either 
constants or they are linearly related to each other. 
In the former case the corresponding variances and 
covariances are zero. If linear relationships exist be- 
tween the coordinates, a matrix D can be derived, and 
conditions on the components of V can be obtained 
by the invariance 

V = D V D .  (41) 

An atom at (x, 2x, z) of space group P ~ m 2 ,  for ex- 
ample, gives 

D =  0 , 

0 

and the elements of V obey 

I/'12=2I/'11, V22=4VIl ,  / /23=2/ /13.  

Principal axes  of  variance-covariance ellipsoid 

A consequence of the extremum property of the prin- 
cipal axes of an ellipsoid is that the principal axes of a 
second-rank tensor are invariant in direction under 
operation by the tensor. When V is a contravariant 
tensor 

S j  ViJvj= 2v~ , (42) 

where vj and v ~ are, respectively, covariant and contra- 
variant components of v. Since 

vj =.Ek gjev ~" (43a) 

v i = Xz g i t v t ,  (43b) 

where the elements g n  are given by the matrix reciprocal 
to (4), we have 

S VOgjkt'k = ,~v ~ (44a) 
],k 

S VOvj = 2 X g i tvz .  (44b) 
j l 

The condition for non-trivial solutions leads to the 
alternative secular equations 

II V i J g j k -  ;,~L I I = 0 (45a) 

I lVO-A#J l l=0 .  (45b) 

Equation (45b) was obtained by Waser (1955) for the 
principal axes of anisotropic temperature factors, and 
(45a) was derived as an alternate solution by Busing & 
Levy (1958). The result is of course applicable to any 
second-rank contravariant tensor. 

Weighted mean of  correlated variables 

The weighted mean of a set of variables h is given by 

I = ( S  wdi) / ,S  w~. (46) 

Whatever the choice of weights wi, the variance of I 
must be computed by (1), which becomes 

( S  Wt)20"2(/) = S W t W j  V t J ,  (47) 
i , j  

where Vii is the tjth element of the v.c. matrix of the 
variables. If the li, for example, are chemically equi- 
valent but crystallographically distinct bond lengths in- 
volving a common atom, the covariances may be quite 
large. 

The set of weights which lead to the minimum a2(l) 
may be obtained by differentiating (47) with respect 
to a particular we and setting da2(l) /dwe=O. This 
leads to 

aZ(l) X wi = S wi Vie, (48) 
i 

o r  
( ,S wtwj  V , j ) /X  w, = S wi V t k .  (49) 

i ,j  i 

An equation of the form of (49) can be written for each 
k. These are equivalent to 

v = V w, (50) 

where the components of w are the wt. Since the left 
side of (49) does not depend on k, the components of v 
satisfy v~ = vj for all i and j. Only relative weights are 
needed in (46) and (47), so it is convenient to set vt = 1 
for all i. The weights are given by 

w : V  -1 V. (51) 

The weighted mean may then be obtained from (46), 
and its variance is readily calculated by (48). 
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When the variables are uncorrelated, (51) gives 
weights inversely proportional to the corresponding 
variances. 

For the case of just two correlated variables 

1/wt=a2(h)--COV (lb 12)- (52) 
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A Description of Various Rotation Function Programs 
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(Received 15 December 1965 and in revised form 22 March 1966) 

Various closely related programs for the calculation of the rotation function are described. The latter 
explores systematically the amount of overlap between two differently oriented Patterson syntheses, 
and can be used to relate similar molecules or structures in the same or different crystals. The calcu- 
lations require only the intensities rather than the Patterson sections. It is shown that (i) neglecting 
all but 10 ~ of the largest intensities for one of the structures and (ii) construction of a table of the 
transform G, of the spherical volume within which the Patterson functions are being compared, sampled 
in a 5 x 5 x 5 grid within the reciprocal unit cell, gives considerable improvement in computing time 
without excess loss of accuracy. The effect of premature truncation or coarseness of the G table is dis- 
cussed, together with other considerations which are important in the successful application of this 
technique. 

1. Introduction 

We shall describe the flow diagram of various closely 
related programs for the calculation of the rotation 
function (Rossmann & Blow, 1962) (RB). Even with 
existing fast computers the time involved in exploring 
the three rotation angles at reasonable intervals is for- 
midable and a number of techniques are here presented 
which significantly improve the speed of the computa- 
tions. We also discuss strategic considerations required 
in the application of these techniques to various types 
of problem. 

The rotation function is defined (RB) as 

R =  f / 2 ( x 2 ) .  Pt(x,)dx I . (1) 

It measures the degree of coincidence when the Patter- 
son function P1 is rotated on the Patterson function 
P2. Any point xl in P~ is related to any other point 
x2 in P2 through the rotation matrix [C] by the relation- 
ship 

X2 = [C]x  1 . 

The above integral (1) can be shown (RB) to reduce 
to the double summation 

R = S Ir ,  I 2 {Z IFhl 2 ah.h'} (2) 
P h 

where IFp] and [Fbl are the structure amplitudes corre- 
sponding to the Patterson functions P2 and P~ respec- 
tively. Gh,h" is an interference function whose magnitude 
depends on the reciprocal lattice vectors h and h' as 
well as the volume U within which the integral (1) is 
evaluated. The non-integral reciprocal lattice vector h' 
is given by h ' = p [ C ] .  

The rotation function is particularly useful for the 
following problems: 
(a) To determine the relative orientation of identical 

or similar rigid chemical groups in two different 
crystals. P1 and P2 must then represent the Patter- 
son functions of the two crystals. 

(b) To determine the orientation of a known rigid 
group in a molecular crystal. Here P~ is the Patter- 
son function of the unknown crystal, while P2 is 
the Patterson function calculated from a model of 
rigid group in a known orientation. 

(c) To determine the relative orientation of identical 
or similar groups of molecules within the same 
crystallographic asymmetric unit. Now P1 and P2 
both represent the same Patterson function of the 
unknown crystal. 

In all cases the integration is performed over the volume 
U equal to the volume around the origin of the Patter- 


